
BRI.,-M-331 S

AD-A246 665
III[ I~II I~I IH lIl l !i~ I ____________________________________

TECHNICAL REPORT BRL-TR-3315

BRL
THE TENSOR EQUATION AX + XA = G

MIKE SCHEIDLER D T IC IO 
-

ELECIr Sa
ARO 2 1991 ~

FEBRUARY 1992 f

APPROVED FOR PUBLIC REUASE, DISTRIUTION IS UNLIrM .

U.S. ARMY LABORATORY COMMAND

BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

92-04995
20 ,,ll i i lH



NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Deparimetit of the Army position,
unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement
of any commercial product.



REPOT DCUMNTATON AGEForm Approved
REPOT DCUMETATON PGE0MB No 0704-0188

Publc reporting ourden for this collection of information is estimated to average i hour per resopor.5e. inctuong thre time for reviewing instructions. searching exinsting data sources.
gathering and maintaning t he data needed, anrd completing and reviewing the collection of information Send comments regarding this burden estinmate or any other aspect of thiS
collectoon of information. including suggestions for reducing this brd~en, to Viashington Hneadauarters Senrces. Diretorate for inforrnation Operations and Rleports. 1115 jeffero
Davos Highwmay. Suite 1204, Arlinngton. VA 22202-4302, and to thre Otirce of Management and Budget. Paperworkx Reduction Project (0704-0 188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

IFebruary 1992 Final March-July1991
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Thle Tensor Eiquation AX + XA = G PR. 1L161102AH43

6. AUTHOR(S)

Mike Scheidle

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

U.S. Army Ballistic Research Laboratory BRL-TR-3315
A1TN: SLCBR-DD-T
Aberdeen Proving Ground, MD 21005-5066

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

We study the second-order tensor equation AX + IA = G for symmetric, positive-definite A and arbitrary G.
Motivated by applications in the continuum mechanics literature, we also exUamine some special cams where G
depends on A and another tensor H. For arbitrary dimensions we establish relations between the solutions X for
various forms of G. These results, together with Rivlin's identities for tensor polynomials in two variables, we
applied in two and three dimensions to obtain explicit formulas for X in direct (component-free) notation. The results
include new formulas as well as new derivations of previously known formulas. An application to the kinatics of
rigid motions; is considered.

14. SUBJECT TERMS 15. NUMBER OF PAGES
31

cotnm mceial im tcl i rft aCIwoM liea alrXir eqiuaiom 16. PRICE CODE

o'17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION I19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE " OF ABSTRACT

UNCLASSUMID I UNCLASSIFIE MUCASFED SAR
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Prescribed by ANS'I Std Z39-18
2 98 102



INTENTIONALLY LEFT BLANK.



TABLE OF CONTENTS

Page

ACKNOWLEDGMENT........................v

1. INTRODUCTION...........................

2. ALGEBRAIC PRELIMINARIES ........................................ 4

3. THE TENSORS LA AND MA..............................................6

4. SOME USEFUL IDENTITIES ......................................... 13

5. FORMULAS FOR THE THREE-DIMENSIONAL CASE ....................... 16

6. FORMULAS FOR THE TWO-DIENSIONAL CASE........................22

7. AN APPLICATION TO THE KINEMATICS OF RIGID MOTIONS ............... 25

8. REFERENCES................................................... 27

DISTRIBUTION LIST .............................................. 29

Acoesio To



INTENTIONALLY LEFF BLANK.

iv



ACKNOWLEDGMENT

I would like to thank Joseph Santiago for his criticism of an earlier draft.

v



INTENTIONALLY LEFT BLANK.

vi



1. INTRODUCTION

Tensor equations of the form

AX + XA = G (1.1)

arise in a variety of problems in continuum mechanics; cf. Sidoroff (1978), Guo (1984), Hoger and

Carlson (1984), Leonov (1976), Stickforth (1982-1983), Mehrabadi and Nemat-Nasser (1987), Dienes

(1979), Stickforth and Wegener (1988), Hoger (1986), Nemat-Nasser (1990), Truesdell (in press),

Wheeler (1990), and Scheidler (to be published) for applications to kinematics and constitutive

modeling. Here the second-order tensors A and G are regarded as known, and we wish to solve (1.1)

for the second-order tensor X. For the applications considered in the aforementioned references, A ic

symmetric and positive-definite. This restriction, which will be imposed here also, guarantees that a

solution X of (1.1) exists and is unique. Indeed, relative to any principal basis for A, this solution is

given by the simple component formula

= a , (1.2)u ai +

where ai are the (necessarily positive) eigenvalues of A. Of course, to actually compute the

components of X by means of (1.2), we must first solve for the eigenvalues and eigenvectors of A.

This has motivated several authors to seek explicit formulas for the tensor X directly in terms of the

tensors A and G. An example is the formula of Sidoroff (1978) and Guo (1984) for the case where G

is skew and the underlying vector space is three-dimensional:

X = l [(I - IIA) G - (A 2G + GA2)]. (1.3)
IA A A

Here 1,, II A , and IIIA denote the principal invariants of A. Since equations of the form (1.3) are often

said to be displayed in direct notation, we will refer to formulas of this type as direct formulas for X

or direct solutions of ( .1).

Although the derivation of the component formula (1.2) is a trivial exercise, the derivation of

direct formulas for X is a nontrivial problem. Furthermore, whereas the component formula (1.2) is

valid for any finite-dimensional vector space, the direct formulas become more complex as the



dimension of the underlying vector space increases. For example, in the two-dimensional case the

solution of (1.1) for skew G is

X 1G (1.4)
1 A

which is substantially simpler than its three-dimensional counterpart (1.3). The formula (1.4) is a

special case of the second of two direct formulas obtained by Hoger and Carlson (1984) for arbitrary

G in the two-dimensional case. For the three-dimensional case, Sidoroff (1978), Hoger and Carlson

(1984), Leonov (1976) and Stickforth (1982-1983) have obtained direct solutions of (1.1) for arbitrary

G. For the two-dimensional and three-dimensional cases, Mehrabadi and Nemat-Nasser (1987)

obtained direct formulas for X when G = AH - HA with H arbitrary. For the three-dimensional case

with G (and thus X) skew, Sidoroff (1978), Guo (1984) and Dienes (1979) obtained formulas for the

axial vector* of X in terms of A and the axial vector of G.

The direct solutions of (1.1) have been used to obtain direct formulas for N arious tensors of

interest in continuum mechanics. Examples include formulas for

(1) the material time derivatives of the stretch and rotation tensors in terms of either the velocity

gradient (Guo 1984; Stickforth and Wegener 1988) or the stretching and spin tensors

(Mchrabadi and Nemat-Nasser 1987; Dienes 1979; Stickforth and Wegener 1988; Hoger

1986) or the material time derivatives of the Cauchy-Green tensors (Hoger and Carlson

1984);

(2) the stretching tensor in terms of the Jaumann rate of the left Cauchy-Green tensor (Sidoroff

1978; Leonov 1976);

(3) the derivative of the square root of a tensor (Hoger and Carlson 1984);

(4) the elastic and plastic spin tensors in terms of the corresponding stretching tensors (Nemat-

Nasser 1990);

*The axial vector of a skew tensor G is the unique vector g such that Gv = g x v for every vector v, where g x v denotes the

vector cross product of g and v.
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(5) the spin tensor in terms of the rotational momentum and the Euler tensor, for a body

undergoing a rigid motion (Truesdell, in press).

The derivatives of the stretch and rotation tensors with respect to the deformation gradient (Wheeler

1990; Scheidler, to be published) also satisfy tensor equations of the form (1.1).

Now the tensor G on the right-hand side of (1.1) may depend on A and some other tensor, say H,

which is regarded as known. Expressions for G of the form

All - HA, AMA, HA - AM 7, AM - HTA,

AH + HTA HA + AH, A 2H + HA2  (1.5)

occur in the applications listed above; here HT denotes the transpose of H. Of course, to obtain a

direct solution of (1.1) in these cases we can simply substitute the expression for G in terms of A and

H into one of the direct solutions which are valid for any G. However, in many of these cases there

exist direct formulas for X which are simpler than (but necessarily equivalent to) the formulas obtained

by this approach. One of the goals of this paper is to develop methods which yield these simpler

formulas with a minimal amount of computational efforL

The paper is organized as follows. Section 2 contains some preliminary material. In Sections 3

and 4 we study the general properties of the solutions of the equation (1.1) and the equation obtained

from (1.1) by setting G = All - HA, i.e., the tensor equation

AX + XA = AMl - HA . (1.6)

By "general" properties we mean properties which are independent of the dimension of the underlying

vector space. We show that when G is given in terms of A and some tensor H by one of the

expressions in (1.5), the solution of (1.1) has a simple expression in terms of the solution of (1.6).

Furthermore, we show that the solution of (1.1) for arbitrary G can be expressed in terms of the

solution of (1.6) with H = G.

In Sections 5 and 6 we restrict attention to the three-dimensional and two-dimensional cases,

respectively, since these are the cases of most interest in continuum mechanics. We utilize
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Rivlin's (1955) identities for tensor polynomials in two variables to derive direct solutions of (1.1) for

the special case where G is orthogonal to every polynomial "i A. These formulas are then used to

derive direct solutions of (1.6) for arbitrary H, and those formulas are in turn used to derive direct

solutions of (1.1) for arbitrary G. When G is given by one of the expressions in (1.5). simpler direct

solutions of (1.1) follow from the identities in Section 4 and our direct solutions of (1.6). Several of

the direct formulas derived in this paper have been obtained previously by some of the authors

mentioned above. However, our derivations differ from theirs, and we derive some new formulas as

well. Our emphasis on the special case (1.6) of the tensor equation (1.1) was motivated by some

results in the paper of Mehrabadi and Nemat-Nasser (1987); see the comments following equation

(4.5) in this paper.

In Section 7 we use one of our formulas to derive a new direct formula for the spin tensor in

terms of the rotational momentum and the tensor of inertia for a body undergoing a rigid motion. In a

follow-up paper (Scheidler, to be published) we use the general properties and the direct formulas

obtained here to derive direct formulas for the derivatives of the stretch and rotation tensors with

respect to the deformation gradient. We apply those results to the derivation of direct formulas for the

material time derivatives of the stretch and rotation tensors and also to the derivation of direct

formulas for the stress in a hyperelastic material in terms of the derivative of the strain energy with

respect to the right stretch tensor. The latter problem was solved recently by Wheeler (1990) for the

isotropic case.

2. ALGEBRAIC PRELIMINARIES

The underlying vector space is a finite-dimensional inner product space Vover the reals. By a

second-order tensor we mean a linear transformation from 'I/into V The vector space of all second-

order tensors is denoted by Lin. Sym and Skw ar the subspaces of Lin consisting of symmetric and

skew tensors. Throughout this paper A denotes an arbitrary symmetric positive- definite tensor with

eigenvalues ai > 0, i = 1, 2, ..., N, where N is the dimension of V The identity tensor is denoted by I;

B, G, H, and X denote second-order tensors which are arbitrary unless specified otherwise. The inner

product of B and H is

B . H := tr (BTH). (2.1)
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sym H:= (H + H") skwll := H (H - HT). (2.2)2 2

We record the following identities for later use:

2 sym (AH) = AH + HTA = AH + HA -2(skwH) A

= AsymH+(symH) A+Askw H-(skwH)A, (2.3)

2 sym (HA) = HA + AH T = A H + HA - 2A skwH

= AsymH+ (symH) A+(skwH)A-AskwH, (2.4)

2 skw (AH) = AH -HTA =AH -HA + 2(skwH) A

= A symH-(symH) A +A skwH+(skwH) A, (2.5)

2skw (HA) = HA - AH T = HA -AH-4-2AskwH

= (symH) A-A symH+A skwH+(skwH) A. (2.6)

A tensor H is a polynomial in A if H =c,,, A' + c,,,n A'-' + ... + c, A + co I for some

nonnegativc integer m and scalars co, c 1 ...c,,,. The subspace of Lin consisting of all polynomials in

A is denoted by P (A). The Cayley-Hamilton theorem implies that

P (A) = span {I. A ..., AN - 1)

= span (A, A 2 ..., AN)

= span I..., A-2, A- ', I, A, A2 .... . (2.7)

Let P (A)' denote the orthogonal complement of P (A), i.e., H E P (A)' iff H is orthogonal to every

polynomial in A. Then from (2.7) and (2.1) it follows that
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H E P(A)'-t*tr(AkH)=0, Vke 0,1. N- I

4-= tr(AkH)=0, Vk 11,2. N}

4-- tr (AkH) = 0, V integer k. (2.8)

In particular, if H E P (A) 1 then H is deviatoric, i.e., tr H = 0. Also note that every skew tensor

belongs to P (A).

By a fourth-order tensor we mean a linear transformation from Lin into Lin. K denotes an

arbitrary fourth-order tensor; the image of H E Lin under K is denoted by K [H]. It is easily verified

that the following two conditions are equivalent:

K [HT = (K [HI)T;

K[symH]=symK[H] and K[skwH]=skwK[H]. (2.9)

If these conditions hold for each H E Lin we say that K is even. Similarly, it is easily verified that

the following two conditions are equivalent:

K [HT, = - (K [H)T;

K[symH]=skwK[H] and K[skwH]=symK[HI. (2.10)

If these conditions hold for every H E Lin, we say that K is odd. The transpose of K is the unique

fourth-order tensor K T with the property

B . K T [H] = K[B]. H, VB,HE Lin. (2.11)

We say that K is symmetric if K T = K.

3. THE TENSORS LA AND MA

In this section we study the properties of five fourth-order tensors associated with any symmetric
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positive-definite second-order tensor A. The two most important of these are denoted by LA and MA

and characterized by the conditions

X= LA [G] 4*AX+XA=G, (3.1)

X = MA [H] <* AX + XA = AH - HA. (3.2)

The other fourth-order tensors are denoted by NA, BA and CA. NA is introduced primarily to simplify

the statement of some of the identities relating LA and MA. BA and CA are introduced to facilitate the

definition of the other tensors and the derivation of their properties.

The fourth-order tensor BA is defined by

BA IX] := AX + XA. (3.3)

Note that BA is invertible. Indeed, the condition BA [X] = G is just the tensor equation (1.1) which, as

pointed out in the introduction, has a unique solution X for any given G. We denote the inverse of B ,

by L,:

LA := (BA) - 1 . (3.4)

Then BA [X] = G iffX = LA [G), which is equivalent to the statement (3.1). If we let Idenote the

fourth-order identity tensor on Lin, then*

LA BA= BALA= (3.5)

which is equivalent to the identities

LA JAH + HAI = A LA [HI + LA H] A = H. (3.6)

*The product of two fourth-order tensors is defined to be their composition: (L. BA) [X]: = LA [BA [X]) for each X e Li.
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The fourth-order tensor CA is defined by

CA [H] := AH - HA. (3.7)

It is easily verified that CA and BA commute; indeed,

CA BA = BA CA = CA2. (3.8)

We define the fourth-order tensor MA by

Lt CA = CA LA, (3.9)

where (3.9), follows from pre-multiplying and post-multiplying (3.8), by LA and using (3.5). From

(3.9) and (3.7) we see that

MA [HI = LA [AH - HA] = A LA [HI - LA [H] A. (3.10)

Then (3.21) follows from (3.1) (with G = AH - HA) and (3.10),. From (3.9), (3.8), and (3.5) we

obtain

MA BA = BA MA = CA = LA CA2 = CA2 LA, (3.11)

which is equivalent to the identities

MA [All + HA] = A MA [H] + MA [HI A

= All - HA

= LA [A 2H-HA2] =A 2 LA [H] - LA [111A 2 . (3.12)

The fourth-order tensor NA is defined by

NA := MA CA =CA MA = LA (CA) 2 , (3.13)

where (3.13)2,3 follow from (3.9). From (3.13) and (3.7) we see that
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NA [H]= MA iAH-HA]=A MA [H]-MA [H]A

= LA [A2H + HA 2 - 2 AHA]. (3.14)

By setting G = A2H + HA2 
- 2 AIA in (3.1) and using (3.14)3, it follows that

X =NA [H] 4-* AX + XA = A2H + HA2 - 2 AHA. (3.15)

The motivation for introducing the tensor NA is based not so much on the result (3.15) as on the

frequent occurrence of the expressions in (3.14)1.2.

It follows from the results above that the set of fourth-order tensors

SA:= {BA, CA, LA, MA, NAJ (3.16)

is commutative. Each tensor KA e SA also has the following properties:

(KA)T= KA (3.17)

KA [B H] =8KA H , if A B =BA; (3.18)

KA[HBI =KA[HIB,ifAB=BA; (3.19)

KQA [QHQT = Q KA [1 QT, V Q E Orth , (3.20)

where Orth denotes the set of orthogonal tensors in Lin. In other words, K [H] is an isotropic

function of A and H which is linear in H. Furthermore, BA, LA and NA are even, whereas CA and MA

are odd. The easiest way to establish these properties is to first prove them for the tensors BA and CA,

and then use the definitions (3.4), (3.9), and (3.13) to prove the properties for LA, MA, and NA. For

example, it is easily established that (3.18) holds for KA = BA or CA. To prove (3.18) for KA = LA,

use the result BA [BH] = B BA [H], apply LA to obtain BH = LA [B BA [HI], and then set H = LA [XJ

to obtain B LA [X] = LA [BX]. To prove (3.18) for KA = MA, use the results for KA = CA and LA:

MA [BH] = LA [CA [BI]] = LA [B CA [HI]]

= B LA [CA [H]] = B MA [Ii].
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The proof of (3.18) for KA = NA is similar.

In addition to the expre"3 ions (3.10) for MA in terms of LA, we also have

MA [H] =H- 2 LA [H] A =2 A LA [HI-H. (3.21)

To prove (3.2 1) , for example, use (3.10), (3.6), and (3.19) (with KA = LA and B = A):

MA [H] = LA [AH - HA]

= LA [AH + HA] - 2 LA [HA]

= H-2 LA [H] A .

In addition to the expressions (3.14)1.2 for NA in terms of MA, we also have

NA [HI=AH-HA-2 MA [H] A

= HA - All + 2 AMA [IHI]. (3.22)

To prove (3.22),, for example, use (3.14),, (3.12), and (3.19):

NA [H] = MA [AR - HA]

= MA [AH + HA] - 2 MA [HA]

= AH - HA - 2 MA [H] A .

From (3.21) we obtain the following expressions for LA in terms of MA:

LA [HI = .1 (H - MA [H]) A - '

- ' (H + MA [H])7

(A-H + HA- ' + A- MA [H] - MA [H] A - '). (3.23)
4
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Now from (3.14) it follows that

A -1 NA [H] A - ' = MA [H] A - ' - A-1 MA [H] . (3.24)

Then by (3.23)3 and (3.24) we obtain the following expressions for LA in terms of NA:

LA [H] - (A-H + HA-' - A1 NA [IH] A- )

A A_' (AH + HA - NA [HI]) A- ' . (3.25)

To establish our next result we need the fact that

A2H + HA 2 = 2 AIA < AH = HA . (3.26)

This can be verified by taking components relative to a principal basis for A:

A2H + HA2 = 2 AHA t* (a' + a 2 - 2 aia.) H-j = 0
.c:* (a, - a, ) 2 Hij = 0

€=* (ai - a,) Hij = 0

€= AH - HA = 0.

Since LA is nonsingular, from (3.7), (3.10), (3.12)3, (3.14), (3.23), (3.25), and (3.26) we conclude that

the following conditions are equivalent:

All= HA,

A LA [H] = LA [H] A,

A MA [H] = ± MA [H] A,

CA H] = 0

MA [H] = 0,

NA [H] = 0.
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LA [H] = A-'H,2

LA [H] = HA-',2

LA [H] = (A-H + HA-'). (3.27)

Now suppose that H e P (A). Then AH = HA, and thus LA [H] = A' H. And since A' E P (A),

it follows that LA [H] = P (A). Conversely, if LA [H] E P (A) then by (3.6) 2 it follows that H E P (A).

Thus we have shown that

LA [H] E P (A) <= H E P (A). (3.28)

In other words, if AX + XA = H, then X is a polynomial in A iff H is a polynomial in A. From (3.6)2

we also see that

2 tr (Ak+ LA [H) = tr (Ak H), V integer k. (3.29)

Then from (3.29) and (2.8) we conclude that

LA [HI E P (A)-L - H E P (A)'. (3.30)

In other words, if AX + XA = H, then X is orthogonal to every polynomial in A iff H is orthogonal to

every polynomial in A. Since tr (Ak (AH - HA)) = 0 for any integer k, from (2.8) with

H - AH - HA we conclude that

CA [H] = AH - HA E P(A)-'. (3.31)

Then from (3.10),, (3.14)1, (3.30), and (3.31) we see that

MA [H], NA [H] E P (A)J " . (3.22)

12



In particular, for any tensor H the solution X of (1.6) is orthogonal to every polynomial in A. Of

course, since A and H commute for any H E P (A), from (3.27) we also have

CA[H]=MA[HIJ=NA[H ] = 0, VHE P(A). (3.33)

We conclude this section with a description of our method for generating direct formulas for

LA [H] and MA [HI. Suppose that by some means we have obtained a direct formula for LA [G]

which is valid for any G e P (A) L but not necessarily for other G. As we will see in Sections 5

and 6, such formulas are easily derived in the two-dimensional and three-dimensional cases. Since

AH - HA E P (A) L for any tensor H, and since MA [H] = LA [AH - HA], by setting G = AH - HA

in our formula for LA [GI we obtain a formula for MA [H] which is valid for any tensor H. Then

from (3.23) we obtain formulas for LA [H] which are valid for any H. Alternatively, we can use the

relation NA [HI = MA [AH - HA] to obtain a formula for NA [HI, and then use (3.25) to obtain

formulas for LA [H] which are valid for any H. In these formulas for LA [H] we can, of course,

replace the A- ' terms by a polynomial in A via the Cayley-Hamilton theorem.

4. SOME USEFUL IDENTITIES

Consider the tensor equation

AX + XA = G(A, H), (4.1)

where G(A, H) denotes one of the expressions listed in (1.5). In terms of the notation introduced in

the previous section, the solution of (4.1) is X = LA [G(A, H)]; and for the special case

G(A, H) = AH - HA this solution can also be written as X = MA [H]. As we will see in the next two

sections, the direct formulas for MA [HI (for arbitrary H) are much simpler than the direct formulas for

LA [G] (for arbitrary G). This should not be too surprising in view of the method described in the

previous section for generating these formulas. For the cases where G(A, H) is given by one of the

other expressions in (1.5), the existence of relatively simple direct formulas for X is due to the fact

that there are simple expressions for LA [G(A, H)] in terms of MA (or NA), A and H. The purpose of

this section is to derive these identities.
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We begin with the case G(A, H) = AHA, that is, with the tensor equation

AX + XA = AHA, (4.2)

which is equivalent to the tensor equation

A-'X + XA -' = H. (4.3)

These equations arise in the problem of finding formulas for the material time derivative of the right

stretch tensor in terms of the stretching tensor (Mehrabadi and Nemat-Nasser 1987; Hoger 1986).

Since the solution of (4.2) is X = LA [AHA], whereas the solution of the equivalent equation (4.3) is

X - LA-i [1H], we see that

LA-. [HI = LA [AHA] = A LA [H] A, (4.4)

where (4.4)2 follows from (3.18) and (3.19) (with B = A). By substituting the expressions for LA [H]

in (3.23) and (3.25) into (4.4), we obtain the identities

LA-I [H] I A (H - MA [H])

=_I (H + MA [H]) A
2

I (AH + HA - NA [H]) . (4.5)
4

In other words, the solution X of (4.2) and (4.3) is also given by any of the three expressions on the

right-hand side of (4.5). The second and third of these identities are equivalent to ones obtained by

Mehrabadi and Nemat-Nasser (1987) under the assumption that H is symmetric. For the three-

dimensional case, they used these identities and their direct formula for MA (HI to obtain direct

solutions of (4.3).*

*Their equations (8.8), (8.12)-(8.13) and (8.16) correspond to equations (4.3), (4.5) and (4.5) in this paper. In their derivation

of (8.13), and apparently of (8.16) as well, they utilized the symmetry of H (= 2 bin their notation). However, these results,
as well as their direct formulas for LA.i [HI, are valid for arbitrary H; see also the comments following equation (5.26) in this
paper.
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Compared with (4.4), the formula for MA-, in terms of MA is much simpler

MA-1 = - MA. (4.6)

Indeed, from (3.2) we see that X = MA [H] iff A- ' X + X A - ' = A- ' (-H) - (-H) A - ' iff

X = MA-i [-H], which yields (4.6). Note that the identities (4.5) can also be obtained by replacing

A with A- ' in (3.23) and then using (4.6) and (3.14).

Now consider the case G(A, H) = A 2H + HA2 , that is, the tensor equation

AX + XA = A2H + HA2 . (4.7)

This equation arises in the problem of finding formulas for the Jaumann rate of the left stretch tensor

in terms of the stretching tensor (Scheidler, to be published). Alternate expressions for the solution

X = LA [A2H + HA2] of (4.7) follow from the identities

LA [A2H + HA21 = A2 LA [H] + LA [H] A 2

= 2 LA [H] A2 + (All - HA)

= 2 A2 LA [H] - (All - HA)

- (AH + HA + N A [H]) . (4.8)

(4.8), follows from (3.18) and (3.19); (4.8)2.3 follow from (4.8), and (3.12); (4.8)4 follows from

(3.14)3, (4.4), and (4.5)3.

Next, we derive alternate expressions for LA [G(A, H)] when G(A. H) = HA - AHT, All - HA,

AH + HTA or HA + AHT; for applications of the tensor equation (4.1) in these cases see Guo (1984)

and Scheidler (to be published). We claim that

LA [HA - AH rT = 2 LA [skw (HA)]

= skw H - MA Isym H]

= skw (H - MA [HI), (4.9)
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LA [A - HTA] = 2 LA [skw (AH)]

= skw H + MA [sym H]

= skw (H + MA [H]), (4.10)

LA [AH + HTAI = 2 LA [sym (AH)]

= H - 2 LA [skw H] A

= syr H + MA [skw H]

= sym (H + MA [H]), (4.11)

LA [HA + AH'I = 2 LA [sym (HA)]

= H - 2 A LA [skw H]

= sym H - MA [skw H]

= sym (H - MA [H]). (4.12)

These identities follow easily from (2.3)-(2.6), (3.6), (3.10), (3.18), (3.19) and the fact that MA is odd

(see (2.10)).

Wc conclude this section with two identities which are used in Scheidler (to be published):

MA [AH - HTA] = 2 MA [skw (AH)J

= A skw H - (skw H) A + NA [sym HI , (4.13)

MA [HA - AHT] = 2 MA [skw (HA)]

= A skw H - (skw H) A - NA [sym H . (4.14)

These identities follow easily from (2.5), (2.6), (3.12), and (3.14).

5. FORMULAS FOR THE THREE-DIMENSIONAL CASE

In this section we derive direct formulas for the fourth-order tensors LA, MA, and NA under the

assumption that the underlying vector space 'i, is three-dimensional. We begin by listing some

identities for second-order tensors which will be used in the derivation of these formulas. The

principal invariants of a second-order tensor B are denoted by I, II, and Ill.:
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6':1 tr B, 11r [(tr B) - tr(B2)], IIJ:= detB. (5.1)

From the Cayley-Haixilton theorem we obtain

A3 = I
A A

2 -IIA A +TIIAI, (5.2)

and

IA A
- ' = A 2 - IA A + IIA I .  (5.3)

Since the exprission 1, 1 - A occurs frequently below, it is convenient to introduce a special symbol

for this expression:

A :=I A I - A (5.4)

The eigenvalues of A are a2 + a 3 , a3 + a, a, + a2; in particular, A is symmetric positive-definite.

Also note that (Sidoroff 1978; Guo 1984; Stickforth and Wegener 1988)

IIA = 'A "A - "'A = (a, + a2) (a2 + a3) (a3 + a,) , (5.5)

and that (Guo 1984)
lll,j A-' = A 2 + 1IIA  I . (5.6)

The following identities are due to Rivlin (1955):

A2HA 2 = 11A AHA - "A (All + HA)

+ IA., A2 + o,(A, H) A + IIIA I'A I, (5.7)

A2HA + AHA 2 = IA AHA - 'A H

+ IA, A 2 + c,2(A, H) A + HIA I , (5.8)

A 2H + HA 2 = - AHA + IA (All + HA) - ZIA H

+ In A 2 + 13(A, H) A + 4(,, H) 1, (5.9)
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where

ci(A, H) = tr (IIIA I - IIA A) H]

= Ill A IH - IA 'AH = - IjAA42 (5.10)

OL(A, H) = tr t(A 2 
- IA A) HI

= I A2 - 'A 'All = - IAA,4J (5.11)

ci(A, H) = - tr [(A I - A) H]

- latI1 - IIA IH = - IaJ. (5.12)

(Q(A. 11) = tr [(A2 
- 1A A + "A 1) H]

= Jt211 - 'A ]All + 1 1 l =I11 l"'A'A-/. (5.13)

Rivlin's identities, as well as (5.2)--(5) , are valid for any second-order tensors A and H. However,

we will continue to assume that A is symmetric positive-definite.

Observe that if cI c '1' (A)' (see (2.8)) then the second line on the right-hand side of Rivlin's

identities (5.7)-(5.9) vanishes. In this case we also have the identity

A (AH + HA) A = Iia H, V H E P(A) -' . (5.14)

This follows by substituting (5.4) into the left-hand side of (5.14), expanding, and then using (5.5),

(5.8), and (5.9). Similarly, from (5.5),, (5.7), and (5.9) we obtain the identity

(A2 + IIA 1)1 H(A 2 + IA1) = 1,4 (AH + HA), V HE P(A)'. (5.15)

In view of (5.6) we see that the identities (5.14) and (5.15) arc equivalent.

Now suppose that G E P (A)', in which case LA [G] e P (A)1 also (see (3.30)). If we set

I = LA [G in (5.14) we obtain

A(A LA [G) + LA [G]JA) = 111A LA [G).
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But since A LA [G] + LA [G] A = G for any tensor G (s (3.6)), we have the following simple

formula for LA [G]:
IllI,j LA [GI = AGA, V G E P (A)± . (5.16)

By substituting the definition (5.4) of A into (5.16) and expanding, we obtain the alternate formula

Illa LA [G] = 12G - IA (AG + GA) +AGA, V G E P(A) ± . (5.17)

By using Rivlin's identity (5.9) with H = G, we see that (5.17) is equivalent to the formula

Ill'i L- [G) = (I' - IIA) G - (A2G + GA 2), V G E P(A) ±-. (5.18)

In view of (3.1), the formulas (5.16)-(5.18) yield simple direct solutions of the tensor equation (1.1)

when G E P1'(A). Since any skew tensor belongs to P(A) ±, the formulas (5.16)-(5.18) hold in

particular for any G E Skw. For this special case the formula (5.18) was obtained by Sidoroff (1978)

and Guo (1984). Their derivations employ the axial vector associated with a skew tensor and thus do

not carry over to th, more general case where G need only belong to P (A)'.

Since M,1 [111 = Lki [AH - HAI, and since AH - HA r P(A) ±- for any tensor H (see (3.31)), by

setting G = All - HA in (5.16) and (5.17) we obtain the following simple formulas for MA [H]:

llj M t 11] = A (All - HA) A

= IA (All - HA) - IA (A 2H - HA2) + A 2HA - AHA 2 . (5.19)

Furthermore, since

All - HA = HA - AH , (5.20)

by (5.19), we also have

iil, MA [HI = A (HA - A)A

= AHA 2 - A2HA. (5.21)
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The formula (5.19)2 was obtained by Mehrabadi and Nemat-Nasser (1987) by repeated applications of

the Cayley-Hamilton theorem. We emphasize that (5.19) and (5.21) are valid for any tensor H. In

view of (3.2), these formulas yield simple direct solutions of the tensor equation (1.6). Furthermore,

in view of (3.1) and the identities (4.5)1,2, (4.9), (4.10), (4.11)24, and (4.12)2_4, the formulas

(5.16)-(5.18), (5.19) and (5.21) yield simple direct solutions of (4.1) when G(A, H) = AHA,

HA - AH T, All - HTA, AH + HTA or HA + AHT.

Since NA [HI = MA [AH - HA], by replacing H with AH - HA in (5.19), we obtain the formula

I"'A NA [HI = A (A2H + HA2 - 2 AHA) A . (5.22)

By substituting (5.4) into (5.22), expanding, and then using (5.2) to reduce the A 3 terms, we obtain

111.A NA [H] = - 2A2HA2 + 2 1A (A2HA + AHA 2) - 2 ('2 + "A) AHA

+ (1A 1A + "liA) (AH + HA) - 2 1 A IIIA H. (5.23)

Substitution of Rivlin's identities (5.7) and (5.8) into (5.23) yields

111A NA [HI = - 4 11A AHA + ('A 1A + 31IIA) (AH + HA) - 41A "11A H

- 2a 2(A, H) A 2 + 2o(A, H) A - 2 111
A ao(A, H) I, (5.24)

where oh and %3 are defined by (5.11) and (5.12), and

oa(A, H) = tr [('AA 2 + ('IA- '2 ) A- I'A I)H]

= 'A IA2H + ("A - 'A) 'AH- IllA IH (5.25)

By using NA [H] = MA [AH - HA], (5.20) and (5.21) with H -- HA - AH, we also obtain

"'A NA [HI = (A2H + HA 2 - 2AHA) A

= A3HA + AHA 3 - 2A2HA2

= - 2 A2HA2 + 1.A (A2HA + AHA 2) -2 nA AHA + IIA (A H + HA), (5.26)
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where the last formula follows from the Cayley-Hamilton theorem for A. In view of (4.5)3 and (4.8)4,

the formulas (5.22)-(5.26) yield direct solutions of the tensor equations (4.2), (4.3), and (4.7). The

direct solution of (4.2) or (4.3) obtained by substituting (5.23) into (4.5)3 is equivalent to the first of

two formulas obtained by Mehrabadi and Nemat-Nasser (1987); cf. equation (8.8) and the formula

preceding (8.17) in their paper.* Their second formula is similar to the one obtained by substituting

(5.24) into (4.5)3; Rivlin's identity (5.9) may be used to obtain their result from ours and vice versa.

Now we derive some formulas for LA [H] which are valid for any tensor H. Substitution of (5.23)

into the expression (3.25), for LA in terms of NA yields

2 IIIA LA [HI = AHA - IA (All + HA) + (I2 + IIA) H

+ 1A IIIA A- ' HA- ' - IIIA (A- 1 H + HA- ) . (5.27)

This formula was stated without proof by Leonov (1976) and Stickforth and Wegener (1988). Leonov

attributes (5.27) to L. M. Zubov; Stickforth and Wegener refer the reader to Stickforth (1982-1983)

for a proof. Substitution of the formula (5.3) for A-1 into (5.27) yields

2 II A II A LA [H= 'A A 2HA2 - 12 (A 2HA + AHA 2)

+ Ila (AH + HA2) + ( , + l'A) AHA

- 1 "A (AH + HA) + (A "'A + "A I1A) H. (5.28)

This formula is due to Hoger and Carlson (1984); they derived it under the assumption that H is

symmetric and then observed that the formula is valid for any H. In view of (3.1), the formulas (5.27)

and (5.28) yield direct formulas for the solution X of the tensor equation AX + XA = H for arbitrary

H.

Observe that when G E P(A) i , the simple formulas (5.16)-(5.18) for LA [G] do not follow

immediately from (5.27) or (5.28). However, Hoger and Carlson (1984) noted that substitution of

Rivlin's identities (5.7)-(5.9) into (5.28) yields

*The last term on the right-hand side of their first formula contains a misprint; the term should read IV MV D.
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IlIi LA [H] = - (A2H + HA2 ) + (I2 - IIA) H

+ II2(A, H) A 2 + 0(A,H) A + 0 (A, H) I; (5.29)

cf. their equation (2.7) for expressions for the isotropic scalar functions 0j. They observed that if

H E Skw then the Pi are zero, and consequently, (5.29) reduces to (5.18) for skew G. Indeed, it is

clear from their expressions for the 1i(A, H) that they reduce to zero for any H r !P (A)', and thus

that (5.18) is a special case of (5.29). By using a representation for isotropic tensor functions of two

symmetric tensors, together with his formula for LA [G] when G E Skw (see (5.18)), Sidoroff (1978)

also obtained (5.29). His expressions for the i are more compact than those of Hoger and Carlson;

however, Sidoroff's expressions involve A- ' and A- 2 and thus may be less useful for some

applications. Other direct formulas for L, in terms of A and A-' follow from (3.23)1,2 and (5.19),:

2 LA [H] = [H- 1 A (AHl-HA) A] A-'

= HA' + 1 A (H - AHA_) A

=A-' [H+ A /(AH-HA)A]

III-

=A - ' H +  1 A (H_ A - HA) A (5.30)

6. FORMULAS FOR THE TWO-DIMENSIONAL CASE

In this section we derive direct formulas for the fourth-order tensors LA, MA, and NA under the

assumption that the underlying vector space 'V is two-dimensional. We begin by listing some identities

for second-order tensors which will be used in the derivation of these formulas. The principal

invariants of a second-order tensor B are denoted by 1. and H.:

I, := tr B, II := det B. (6.1)

From the Cayley-Hamilton theorem we obtain
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A 2 = IA A - IIA I, ITA A- ' = 1I l- A. (6.2)

The following identities are due to Rivlin (1955):

AH + HA = IA H + lIH A + [$I(A, H) 1, (6.3)

AHA = IIA H + IAt A - TI A Itt 1 (6.4)
where

PI1(A, H) = tr [(A - 'A 1) HI

= I, - 'A 'i = - ',A IA-H (6.5)

Observe that if H E P (A)', then all but the first terms on the right-hand side of Rivlin's identities

(6.3) and (6.4) vanish:

AH + HA = IAH , AHA = IIAH , V H r P(A) ± . (6.6)

Now suppose that G c P (A)-, in which case LA [G] r P (A)-L also. If we set H = LA [G] in (6.6),

and use the fact that ALA [G] + LA [G] A = G for any tensor G, we obtain the following simple

formula for LA [G]:

IA LA[G] = G, VGE P(A)L-. (6.7)

In particular, the formula (6.7) holds for any G E Skw. Since MA [H] = LA [AH - HA], and since

AH - HA E P (A)' for any tensor H, by setting G = AH - HA in (6.7) we obtain the following

simple formula for MA [HI:

IA MA [HI = AH - HA. (6.8)

This formula was obtained by Mehrabadi and Nemat-Nasser (1987) using a different method.

Since NA [H] = MA [AH - HAI, by replacing H with AH - HA in (6.8) we obtain the formula

A  [HI = A2H + HA2 - 2AHA. (6.9)
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Substitution of (6.2), into (6.9) yields

IA NA [H] = - 2 AHA + IA (AH + HA) - 2 IIA H. (6.10)

Recall that X = LA-i [H] is the solution of the tensor equations (4.2) and (4.3). As an application of

the formula (6.10) for NA [H], observe that substitution of (6.10) into the identity (4.5)3 yields the

formulas

2 IA LA-i [H] =AHA + IIA H

=2 IIAH + IAnA - IIA 'HI. (6.11)

The second formula follows from the first by Rivlin's identity (6.4). A formula equivalent to (6.11),

was obtained by Hoger (1986) using a different method; cf. equation (4.5) and the equation preceding

(4.3) in her paper.

Finally, we derive some formulas for LA [H] which are valid for any tensor H. Substitution of

(6.10) into (3.25)2 yields

2 IA LA [I = H + IIA A-HA- '. (6.12)

This also follows from (6.11), with A -- A- ' and the identitites IA-I = IA'IIA and IIA-i = 1/1iA. Recall

that A- ' can be expressed in terms of A by the simple formula (6.2)2. By substituting (6.2)2 into

(6.12) and expanding, we obtain

2 IA IIA LA [H] = AHA - IA (AH + HA) + (I2 + IIA) H. (6.13)

Substitution of Rivlin's identities (6.3) and (6.4) into (6.13) yields

2 IA I IA LA [H]= 2 IIAH + (A, H) A + o(A,H) I, (6.14)

where 03, is given by (6.5), and

o(AI H) =tr I (('A - HA) 1 - 'A A) HI

(I2 - ,) IH - 'A IAH. (6.15)
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The formulas (6.13) and (6.14) were obtained by Hoger and Carlson (1984).

7. AN APPLICATION TO THE KINEMATICS OF RIGID MOTIONS

The material in this section, with the exception of the last equation, is taken from § 1.10 of the

textbook by Truesdell (in press). Let W denote the spin tensor. Let M, E and J denote the rotational

momentum, the Euler tensor and the tensor of inertia of a body relative to the (possibly time -

dependent) point x0. J and E ae symmetric positive-definite tensors which are related as follows:

J = (tr E) I - E. (7.1)

If the body is undergoing a rigid motion, and if x0 is either the location of the center of mass of the

body or a fixed point of the body, then the rotational momentum relative to x0 is related to the spin

tensor and the Euler tensor relative to x. by the formula

M = - (EW + WE). (7.2)

Truesdell (in press) utilized Guo's formula (see (5.18)) to solve (7.2) for the spin tensor in terms of

the rotational momentum and the Euler tensor:

W= I [ ( 1 IIE)M -(E2M+ME2) (7.3)
IE 111 - IllE

The purpose of this section is to point out that W has a simpler expression in terms of the tensor of

inertia. Indeed, since the solution of (7.2) is W = LE [-M], by setting A = E and G = -M in (5.4),

(5.5) and (5.16) and using (7.1), we find that

W _ JMJ. (7.4)
III,
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